Managing Nutrients in

Greenhouse Horticulture

Original content by Domenic Cavallaro Stoller Australia Pty Ltd

Plant HORMONE PRODUCTION follows approx. cycles

with changing NUTRIENT requirements

Plant Hormone Balance and Cycles

Any imbalance in these hormone cycles at any time can irreversibly reduce genetic expression

Source: * ©Stoller USA

Environmental Factors Also Affect Plant Growth

STRESSES Reduces Maximum Production Potential

Impact of Stress on Crop Yield and Quality

Time to Harvest, Increasing Total Accumulation of Stress

Effects of high Salinity on Root Uptake of soil water

Non-saline soil

Saline soil Source: Kelly and Rengasamy (2006)

Cation Exchange Capacity

 Capacity of the soil to hold cations (trace elements and other cations – with a +ve charge)

• eg Calcium, potassium, magnesium, sodium

 CEC is the key to the soils nutrient holding (and releasing) ability

3 Means of Nutrient Uptake

A Deficiency of any Single Nutrient is Enough to Limit Yield

Source: Yara 2010

Soil pH

 Measure of the acidity or alkalinity of the soil from 0 to 14, where 0 is max. acidity, 7 is neutral and 14 is max. alkalinity

 pH is a logarithmic scale where each step is a 10X multiple of the one before – ie pH 8 is 10X more alkaline than 7 and 4 is 10X more acidic than 5

Influence of soil pH on Nutrient availability

The role of Key Nutrients In plant nutirtion

Role of Nitrogen (N)

Important for:

- Crop Quality
- Increasing the size of produce
- Building plant protein
- Lifting total soluble solids (TSS)
- Plays a key role in sugar content
- N balance is important for timely maturation

Nitrogen Excess

- Poor Crop Quality
- Softer fruit and vegetables (Ca imbalance)
- Smaller fruit (K imbalance)
- Hollow fruit
- Poor shelf life
- Delay in maturity and colour development
- Susceptible to disease
- Inhibit potassium and copper uptake

Excess Nitrogen - Soft Fruit

Role of Phosphorus (P)

Important for:

- Reduction of seedling transplant shock
- Root development
- Good uptake of other nutrients
- More continuous fruit production
- Reduction in root disease

Impaired root development due to P deficiency

Source: Yara 2010

Phosphorus Excess

- Reduced uptake of Iron
- Reduced uptake of Copper
- Reduced uptake of zinc

Potassium (K) Role

Important for:

- Regulating water balance and water loss eg wilting
- Production and transport of sugars
- Synthesis of protein
- Increasing the thickness of the outer cell walls
- Improving frost and drought tolerance
- Fruit quality TSS and sugars
- Firmer fruit and shelf life

Internal White Tissue

Potassium deficiency causes Blotchy Ripening Photo courtesy: Applied Plant Research, Naaldwijk (NL)

Source: Yara 2010

- Reduces available calcium
- Reduces available magnesium

Role of Calcium (Ca)

Important for

- Growing points, roots and tip development
- Cell wall strength
- Fruit retention on the plant
- Shelf life
- Reducing wilting and loss of water
- Reducing blossom end rot

Blossom end rot – combination of calcium deficiency and plant stress in hot weather

Ca is needed to overcome stress

- Involved in stress signaling and osmoregulation (water escaping from leaves through leaf pores)
- Plants require more calcium under stress conditions

Calcium acts as a glue. Structural Function

Calcium Excess

- Inhibit uptake of potassium
- Inhibit uptake of magnesium
- Reduce fruit shelf life
- Boron improve uptake and mobility

Role of Magnesium (Mg)

Important for:

- Chlorophyll production
- Maintaining active photosynthesis
- Sugar content
- Protein content
- Flavour

Magnesium Excess

- Inhibit uptake of potassium
- Inhibit uptake of calcium
- Reduce fruit shelf life

Role of Zinc (Zn)

Important for:

- Helping carbohydrate production
- Protein production nitrogen use
- Auxin production regulates growth
- Affects flower pollination and yield
- Improves plants resistance to root diseases
- Excess P can reduce uptake
- Excess Cu can reduce uptake

Role of Manganese (Mn)

- Chlorophyll synethesis
- Photosynthesis
- N utilisation protein production
- Vitamin C Fruit
- High pH soils low levels found in plants

Role of Boron (B)

Important for:

- Plant hormones eg Auxins
- Movement of plant sugars
- Strength of plant cell walls
- Pollen viability
- Flower and fruit development
- Critical for the uptake of calcium
- Helping with Ca movement through the plant

Role of Copper (Cu)

Important for:

- Flavour
- Sugar content
- Water use efficiency
- Pollen formation, viability and fertilisation fruit set
- Strength of cell walls
- Colour of fruit or vegetable

- Inhibit zinc uptake
- High nitrogen higher levels of copper

Role of Iron (Fe)

Important for

- Chlorophyll formation (green leaves)
- Photosynethsis and respiration
- Key role in growth and yield
- K, Ca, Mg, Mn, Zn and copper compete with Fe

Role of Molybdenum (Mo)

Important for:

- Needed by plants to utilise nitrogen the higher the nitrogen the greater the need for Mo
- Pollen formation
- High soil P will limit uptake of Mo
- High soil Sulphates (S) will limit uptake of Mo

Benefits of building calcium levels

- Builds stronger cell walls (combine with boron nutrition)
- Enhances root growth
- Correlation with less disease
- Reduces sodium levels inside the plant

Remember that calcium follows the plant transpiration path (usually to the leaves) and that foliar application is needed for optimal fruit quality

Role of Calcium in Sodium Management

(salinity and sodicity issues)

Sodium in the soil water solution dominating the clay particle

Calcium moving in and sodium moving out

If there is enough soluble calcium – it will beat the sodium to the sites

If sodium is persistent in the soil or water – keep the calcium levels high in the root zone alone

SALT INDEX

Calcium Nitrate	52.4
Calcium Chloride	58.4
Potassium Thiosulfate	64.0
Potassium Nitrate	73.6
Ammonium Thiosulfate	84.4
Urea-ammonium Nitrate Solution	95.0
Ammonium Nitrate	104.7

Summary

- Need to know in your soil do you have a salinity or sodicity problem or both.
- Monitor leaf test for high sodium levels
- Effective leaching of sodium can occur during winter rainfall and early season irrigation.
- Soil amendments need to be used if sodium is to be unlocked and leached.

Summary

- Type of amendments will be determined by the ability to leach through irrigation or just rainfall
- Type of amendments will be influenced by the need for calcium
- Aim to manage salinity and sodicity around the effective root zone.